6 research outputs found

    Forest attributes mapping with SAR data in the romanian South-Eastern Carpathians requirements and outcomes

    Get PDF
    Esta tesis doctoral se centra en la estimación de variables forestales en la zona Sureste de los Cárpatos Rumanos a partir de imágenes de radar de apertura sintética. La investigación abarca parte del preprocesado de las imágenes, métodos de generación de mosaicos y la extracción de la cobertura de bosque, sus subtipos o su biomasa. La tesis se desarrolló en el Instituto Nacional de Investigación y Desarrollo Forestal Marín Dracea (INCDS) y la Universidad de Alcalá (UAH) gracias a varios proyectos: el proyecto EO-ROFORMON del INCDS (Prototyping an Earth-Observation based monitoring and forecasting system for the Romanian forests), y el proyecto EMAFOR de la UAH (Synthetic Aperture Radar (SAR) enabled Analysis Ready Data (ARD) cubes for efficient monitoring of agricultural and forested landscapes). El proyecto EO-ROFORMON fue financiado por la Autoridad Nacional para la Investigación Científica de Rumania y el Fondo Europeo de Desarrollo Regional. El proyecto EMAFOR fue financiado por la Comunidad Autónoma de Madrid (España). El objetivo de esta tesis es el desarrollo de algoritmos para la extracción de variables forestales de uso general como la cobertura, el tipo o la biomasa del bosque a partir de imagen de radar de apertura sintética. Para alcanzar dicho propósito se analizaron posibles fuentes de sesgo sistemático que podrían aparecer en zonas de montaña (ej., normalización topográfica, generación de mosaicos), y se aplicaron técnicas de aprendizaje de máquina para tareas de clasificación y regresión. La tesis contiene ocho secciones: una introducción, cinco publicaciones en revistas o actas de congresos indexados, una pendiente de publicación (quinto capítulo) y las conclusiones. La introducción contextualiza la importancia del bosque, cómo se recoge la información sobre su estado (ej., inventario forestal) y las iniciativas o marcos legislativos que requieren dicha información. A continuación, se describe cómo la teledetección puede complementar la información de inventario forestal, detallando el contexto histórico de las distintas tecnologías, su funcionamiento, y cómo pueden ser aplicadas para la extracción de información forestal. Por último, se describe la problemática y el monitoreo del bosque en Rumanía, detallando el objetivo de la tesis y su estructura. El primer capítulo analiza la influencia del modelo digital de elevaciones (MDE) en la calidad de la normalización topográfica, analizando tres MDE globales (SRTM, AW3D y TanDEM-X DEM) y uno nacional (PNOA-LiDAR). Los experimentos se basan en la comparación entre órbitas, con un MDE de referencia, y la variación del acierto en la clasificación dependiendo del MDE empleado para la normalización. Los resultados muestran una menor diferencia ente órbitas al utilizar un MDE con una mejor resolución (ej. TanDEM-X, PNOA-LIDAR), especialmente en el caso de zonas con fuertes pendientes o formas del terreno complejas, como pueden ser los valles. En zonas de alta montaña las imágenes de radar de apertura sintética (SAR) sufren frecuentes distorsiones. Estas distorsiones dependen de la geometría de adquisición, por lo que es posible combinar imágenes adquiridas desde varias órbitas para que la cobertura sea lo más completa posible. El segundo capítulo evalúa dos metodologías para la clasificación de usos del suelo utilizando datos de Sentinel-1 adquiridos desde varias órbitas. El primer método crea clasificaciones por órbita y las combina, mientras que el segundo genera un mosaico con datos de múltiples órbitas y lo clasifica. El acierto obtenido mediante combinación de clasificaciones es ligeramente mayor, mientras que la clasificación de mosaicos tiene importantes omisiones de las zonas boscosas debido a problemas en la normalización topográfica y a los efectos direccionales. El tercer capítulo se enfoca en separar la cobertura forestal de otras coberturas del suelo (urbano, vegetación baja, agua) analizando la utilidad de las variables basadas en la coherencia interferométrica. En él se realizan tres clasificaciones de máquina vector-soporte basadas en un conjunto concreto de variables. El primer conjunto contiene las estadísticas anuales de la retrodispersión (media y desviación típica anual), el segundo añade la coherencia a largo plazo (separación temporal mayor a un año), el tercero incluye las estadísticas de la coherencia a corto plazo (mínima separación temporal). Utilizar variables basadas en la coherencia aumenta el acierto de la clasificación hasta un 5% y reduce los errores de omisión de la cobertura forestal. El cuarto capítulo evalúa la posibilidad de detectar talas selectivas utilizando datos de Sentinel-1 y Sentinel-2. Sus resultados muestran que la detección resulta muy difícil debido a la saturación de los sensores y la confusión introducida por el efecto de la fenología. El quinto capítulo se centra en la clasificación de tipos de bosque basado en una serie temporal de datos Sentinel-1. Se basa en la creación de un conjunto de modelos que describen la relación entre la retrodispersión y el ángulo local de incidencia para un determinado tipo de bosque y fecha concreta. Para cada píxel se calcula el residuo respecto al modelo de cada uno de los tipos de bosque, acumulando dichos residuos a lo largo de la serie temporal. Hecho esto, cada píxel es asignado al tipo de bosque que acumula un menor residuo. Los resultados son prometedores, mostrando que frondosas y coníferas tienen un comportamiento distintivo, y que es posible separar ambos tipos de bosque con un alto grado de acierto. El sexto capítulo está dedicado a la estimación de biomasa utilizando datos Sentinel-1, ALOS PALSAR y regresión Random Forest. Se obtiene un error similar para ambos sensores a pesar de utilizar una banda diferente (band-C vs. -L), con poca reducción en el error cuando ambas bandas se utilizan conjuntamente. Sin embargo, el ajuste de un estimador adaptado a las condiciones locales de Rumanía sí ofreció una reducción de del error al ser comparado con las estimaciones globales de biomasa

    Synthetic aperture radar sensitivity to forest changes: A simulations-based study for the Romanian forests

    Get PDF
    Natural and anthropogenic disturbances pose a significant threat to forest condition. Continuous, reliable and accurate forest monitoring systems are needed to provide earlywarning of potential declines in forest condition. To address that need, state-of-the-art simulationsmodelswere used to evaluate the utility of C-, L- and P-band synthetic aperture radar (SAR) sensors within an integrated Earth-Observation monitoring system for beech, oak and coniferous forests in Romania. The electromagnetic simulations showed differentiated sensitivity to vegetation water content, leaf area index, and forest disturbance depending on SAR wavelength and forest structure. C-band data was largely influenced by foliage volume and therefore may be useful for monitoring defoliation. Changes in water content modulated the C-band signal by b1 dBwhichmay be insufficient for a meaningful retrieval of drought effects on forest. Cband sensitivity to significant clear-cuts was rather low (1.5 dB). More subtle effects such as selective logging or thinning may not be easily detected using C- or L-band data with the longer P-band needed for retrieving small intensity forest disturbances. Overall, the simulations emphasize that additional effort is needed to overcome current limitations arising from the use of a single frequency, acquisition time and geometry by tapping the advantages of dense time series, and by combining acquisitions from active and passive sensors. The simulation results may be applicable to forests outside of Romania since the forests types used in the study have similar morphological characteristics to forests elsewhere in Europe.Romanian National Agency for Scientific Research and Innovation Authorit

    Assessing the Utility of Sentinel-1 Coherence Time Series for Temperate and Tropical Forest Mapping

    No full text
    This study tested the ability of Sentinel-1 C-band to separate forest from other common land use classes (i.e., urban, low vegetation and water) at two different sites. The first site is characterized by temperate forests and rough terrain while the second by tropical forest and near-flat terrain. We trained a support vector machine classifier using increasing feature sets starting from annual backscatter statistics (average, standard deviation) and adding long-term coherence (i.e., coherence estimate for two acquisitions with a large time difference), as well as short-term (six to twelve days) coherence statistics from annual time series. Classification accuracies using all feature sets was high (>92% overall accuracy). For temperate forests the overall accuracy improved by up to 5% when coherence features were added: long-term coherence reduced misclassification of forest as urban, whereas short-term coherence statistics reduced the misclassification of low vegetation as forest. Classification accuracy for tropical forests showed little differences across feature sets, as the annual backscatter statistics sufficed to separate forest from low vegetation, the other dominant land cover. Our results show the importance of coherence for forest classification over rough terrain, where forest omission error was reduced up to 11%

    Assessing the Utility of Sentinel-1 Coherence Time Series for Temperate and Tropical Forest Mapping

    No full text
    This study tested the ability of Sentinel-1 C-band to separate forest from other common land use classes (i.e., urban, low vegetation and water) at two different sites. The first site is characterized by temperate forests and rough terrain while the second by tropical forest and near-flat terrain. We trained a support vector machine classifier using increasing feature sets starting from annual backscatter statistics (average, standard deviation) and adding long-term coherence (i.e., coherence estimate for two acquisitions with a large time difference), as well as short-term (six to twelve days) coherence statistics from annual time series. Classification accuracies using all feature sets was high (>92% overall accuracy). For temperate forests the overall accuracy improved by up to 5% when coherence features were added: long-term coherence reduced misclassification of forest as urban, whereas short-term coherence statistics reduced the misclassification of low vegetation as forest. Classification accuracy for tropical forests showed little differences across feature sets, as the annual backscatter statistics sufficed to separate forest from low vegetation, the other dominant land cover. Our results show the importance of coherence for forest classification over rough terrain, where forest omission error was reduced up to 11%

    Growing stock volume retrieval from single and multi-frequency radar backscatter

    Get PDF
    16 Pág. Departamento de Medio Ambiente y Agronomía​While products generated at global levels provide easy access to information on forest growing stock volume (GSV), their use at regional to national levels is limited by temporal frequency, spatial resolution, or unknown local errors that may be overcome through locally calibrated products. This study assessed the need, and utility, of developing locally calibrated GSV products for the Romanian forests. To this end, we used national forest inventory (NFI) permanent sampling plots with largely concurrent SAR datasets acquired at C-and L-bands to train and validate a machine learning algorithm. Different configurations of independent variables were evaluated to assess potential synergies between C-and L-band. The results show that GSV estimation errors at C-and L-band were rather similar, relative root mean squared errors (RelRMSE) around 55% for forests averaging over 450 m3 ha−1, while synergies between the two wavelengths were limited. Locally calibrated models improved GSV estimation by 14% when compared to values obtained from global datasets. However, even the locally calibrated models showed particularly large errors over low GSV intervals. Aggregating the results over larger areas considerably reduced (down to 25%) the relative estimation errors.This research was funded by the Romanian National Authority for Scientific Research and Innovation and the European Regional Development Fund through the project “Prototyping an Earth-Observation based monitoring and forecasting system for the Romanian forests” (EO-ROFORMON, grant P_37_651/105058).Peer reviewe
    corecore